Inside Marine Harvest’s new Inchmore hatchery

Inside Marine Harvest’s new Inchmore hatchery

Looking back at the opening of Marine Harvest’s new Inchmore hatchery, freshwater manager John Richmond is optimistic.

Fledgling crayfish farm set to scale up in BC

Fledgling crayfish farm set to scale up in BC

Vancouver Island on the west coast of Canada is a long way from the Balkans

Lapu-lapu successfully bred in Taiwan

Lapu-lapu successfully bred in Taiwan

Fish-breeding experts in Taiwan

Saving the shortnose sucker

Saving the shortnose sucker

A small number of Lost River and shortnose sucker fish

Scott Snyder has joined Zeigler Bros., Inc. as the company’s new nutritional technology manager. In his role, Snyder will provide nutritional and technical support for domestic aquaculture production and customers as well as international licensees.
Looking back at the opening of Marine Harvest’s new Inchmore hatchery, freshwater manager John Richmond is optimistic.
MainStream Aquaculture has been at the forefront of aquaculture development for nearly two decades. The company’s new 1,000-tonne RAS facility, 30 minutes from downtown Melbourne, is an amalgamation of those years of experience in producing barramundi for the retail and food service sectors.
Although he appreciates the support already being given to the trout sector in France, Jean Ruche believes there’s still room for a better knowledge of the industry. To achieve this goal, he’s working in close cooperation with officials to create an improved regulatory framework for the sector.
With its frigid winters and abundant cold lakes and streams Canada’s finfish industry is dominated by the culture of trout and salmon. However, in the heart of central Ontario lies the small town of Zephyr, where a small company is rearing non-traditional species in a non-traditional way.
Despite its remoteness, the Río Hollemberg smolt farm is equipped with state-of-the-art technology, providing Salmones Magallanes with about 4.8 million smolts every year. This is sufficient to fulfill the requirements of the company’s eight sea sites in the region.
Apollo Aquaculture Group (AAG) in Singapore is building an eight-story RAS in the city-state in order to produce grouper and shrimp. The company hopes to be in full production with its new RAS by 2020.
It’s no secret that New Zealand’s primary sector is driven by exports, and the New Zealand Scampi (Metanephrops Challengeri) fishery is no exception.
A mitigation hatchery in Washington State compares its rearing water sources and the impacts on juvenile fish health.
A unique New Zealand facility produces whitebait species which it sells commercially to fund restoration efforts. Of all the ways to hunt and fish, few are more quintessentially Kiwi than the act of gathering whitebait. In New Zealand, whitebait refers to the larval form of five Galaxiid species. These larval fish are caught as they return upstream from the ocean to continue growing and, eventually, to spawn. From August/September through the end of November, it’s rare to find a stream that flows into the ocean without someone standing watch over their whitebait net. To call it a popular Kiwi hobby is nearly an understatement. Across the country, however, recreational and commercial catches have been in decline. Of the five species one can catch, four are labelled by the New Zealand Department of Conservation as declining or threatened. This is due to a variety of factors including an increase in river and stream pollution from industry and farming, and the introduction of aggressively invasive plant and fish species. The decision of the government to continue to allow whitebait fishing has become a controversial decision across the country, with many calling for restrictions or a total ban of commercial harvesting. Hope for the future There is, however, hope for the whitebait species of New Zealand. Located an hour north of Auckland, in the small town of Warkworth, Manāki Whitebait (a.k.a. New Zealand Premium Whitebait) is New Zealand’s first, and only, whitebait farm. The term Manāki is a Te Reo word that means to support, cherish or take care of others. The name is fitting. Originally built as a restoration hatchery, a small, dedicated team led by Paul Decker, Managing Director of the Mahurangi Technical Institute, began by cultivating all five species of whitebait. The hatchery was constructed and initially funded using private donations. This model, however, is difficult to maintain in the long term. In the words of Decker, “we knew we can’t keep doing this, but we need to keep going.” They needed a new financial model. Commercial productionFortunately they discovered that one of the whitebait species, the Giant Kōkopu, was an ideal candidate for commercial production. The Kōkopus viability stems mainly from its breeding characteristics. Unlike some of the other whitebait species, which spawn only once after two years growth and then die, the Giant Kōkopu is capable of breeding year after year, with their oldest brood being 10 years old - this is nothing for a Giant Kōkopu, which can live for 30 years. The Giant Kōkopu also offers a higher rate of fecundity than other species and responds well to artificial rearing environments, growing from hatch to larval harvest in only 12 weeks. A new model was born: they were going to rear Giant Kōkopu commercially to generate income for their restoration work. This model was one that Kiwi investors could not resist. While all investors involved in the Giant Kōkopu commercial operation are Kiwis, of note is the heavy Māori interest. Whitebait is a culturally and historically important food for the Māori. Local and nearby Māori investment fund managers saw, in this model, the chance to profit while working to bolster wild Whitebait populations. This offers the benefit of allowing the long-standing cultural tradition of Whitebait collection to remain viable for future generations. Clean RAS productionWhile technologically speaking Manāki is not breaking new ground in RAS, the hatchery offers a shining example of conservation-oriented rearing practices. They have been able to achieve commercial production without the use of synthetic inputs, either in the form of treatments or spawning inducers. This is born of the desire to avoid introducing foreign contaminants into local waterways via their restoration releases, and to allow the fish destined for wild re-stocking to remain as hearty and self-sufficient as possible. The hatchery’s ability to avoid these inputs is due to its regimented cleaning routine. “Clean and green is what we say...we do more cleaning than probably most places in the world” says Decker. This commitment to clean production has allowed them to begin the process of organic certification, which Decker believes they will achieve without issue. They’ve also become the suppliers to educational institutions such as the National Aquarium which seek to source their display fish as sustainably as possible. Working business model As a means of generating funds for restoration work, Manākis business model is working. The hatchery is currently doing several releases each year, including one release of 10,000 fish in Tawharanui National Park planned for May of this year. As more releases are conducted, interest from schools and environmental organizations in using their Whitebait in restoration projects is increasing. Decker foresees this trend continuing in the future.The path to this point has not been without its challenges. Since it was the only Whitebait farm in the country, sourcing appropriate feed posed a problem. To rear efficiently, they had to switch from live to pelletized feed. Fortunately, their chief scientist, fish nutritionist Dr. Tagried Kurwie, was able to work with their feed producer to develop a Whitebait specific formulation, allowing them to achieve an FCR of 1.2:1. Culturing live feed for hatchlings, broods and stock earmarked for release still presents a challenge, as techs must learn the ins and outs of multiple culture techniques. Challenges overcome In the early days the team at Manāki was also having trouble with certain environmental cues causing their stock to change to a darker colour. In a discerning marketplace that demands translucent to light coloured Whitebait, this was troubling. However, the team was able to determine what was causing this transition, and they have been able to sort out these issues. Another great challenge has been keeping the saltwater system full. Being located about 5 km from the nearest saltwater, Manāki must regularly truck in salt water to keep the RAS system topped up. One release-stock specific challenge has been developing a procedure for “wildizing” the fish meant for release. In the weeks leading up to their release, none of the staff can let themselves be seen over the tank. This is so that in the wild these fish will not associate humans with feeding and will thus be as skittish and survival-oriented as their wild born counterparts. Like any well-built operation, Manāki was determined to overcome these challenges because, at the end of the day, staff knew they had something special to offer the discerning public. In the words of Paul Decker, “everyone says it’s the best product they’ve ever tasted.” This is, in part, because they’re able to purge the fish before harvest. Purging the ‘bait Purged Whitebait offers a cleaner, purer taste without any of the unpleasant grittiness one can find in wild Whitebait. They’re also able to kill their harvest instantly and maintain the cold chain to market. The lack of stress response and short turn-around time between harvest and sale means the fish end up being the best looking on the market. “You can see the freshness in them…they’re glistening,” says Decker. “They’re the sturgeon of the Pacific.” Having proven to the investors that this can work, Decker and his team are looking toward a bright future. They are currently assessing sites for a new, modern facility. This is an important next step because within the next couple of years they hope to be producing 50-100 tons per year. Barriers to export They are also working to remove barriers to increase exports. Currently, their product will occasionally be stopped during export because Whitebait is flagged as an endangered species. The team at Manāki is focused on ensuring these holdups are avoided. They’re also hoping to increase international recognition of the delicious, high quality nature of their New Zealand Whitebait. In many other national markets, Whitebait is used a generic term for low quality white fish. Naming the company’s Whitebait Manāki is, in part, to help differentiate it, an approach comparable to that of the Malepeque Oyster growers. With the lessons of the past in their back pocket and the vision of a new facility in their eyes, Decker and the team at Manāki Whitebait will continue to change the Whitebait market for the better.
Chinquihue Foundation is the only facility producing mussel seed in Chile, and it comes with a socially oriented goal: to help low-income fishermen and mussel farmers make a living wage. Chinquihue Foundation, a Chilean non-profit NGO founded in 1989 with support from the Chilean Government and the Japan International Cooperation Agency (JICA), has operated a hatchery in Puerto Montt since 1996. Its aim is to produce seeds and seedlings from different resources and thus promote small-scale aquaculture, helping artisanal fishermen become farmers. Located along the coastline in Chincui Bay -12km south of Puerto Montt - this production unit specializes in benthic invertebrates as well as microalgae and macroalgae. In the beginning it was focused on Northern scallop (Argopecten purpuratus) and Pacific oyster (Crassostrea gigas), but many other species have also been reared here over the past two decades. This includes such species as red abalone (Haliotis rufescens), green abalone (Haliotis discus hannai), Chilean sea urchin (Loxechinus albus), clam (Venus antiqua), Pacific clam (Gari solida), Sea asparagus (Ensis macha), Chilean abalone (Concholepas concholepas), Chilean mussel (Mytilus chilensis), Magellan mussel (Aulacomya ater), Choro mussel (Choromytilus chorus), Gracilaria seaweed (Gracilaria spp.) and Giantkelp (Macrocystis spp.). Currently, there are only mussels in the facility along with the auxiliary cultivation of microalgae to feed those mussels. These are primarily diatomeous and flagellates such as Isochrysis galbana, Nannochloris atomus, Tetraselmis suecica, Chaetoceros calcitrans and Chaetoceros neogracilis. Pilot level facility The hatchery operates at pilot level and is located beside the port terminal belonging to Chinquihue Foundation. It is composed of two laboratories, one of 300m2 intended for mollusks and echinoderms and another one of 150m2 for macro-algae. There is also a 315m2 greenhouse for mollusks and echinoderms within these premises. All rooms have the proper equipment and infrastructure systems required for seawater adduction, aeration, heating and thermal isolation. The facility includes 10 large farming tanks (three of 3,000 liters and seven of 2,500 liters) combined with 100 tanks of 200 liters each. There are three types of mechanical filters: Prefilters are at the seawater suction pump and in hoses that bring water into the facility. Then, once in accumulation tanks, water is depurated in bag filters and finally passed through a UV system. Regarding staff size, there were up to 12 workers in this hatchery during the original five-year project funded by JICA. However, this number has been reduced to just five now, who are exclusively employed to work with mussel species. “In terms of installed capacity, we could produce batches of 30 million pre-metamorphic larvae every two months,” says Viviana Videla, manager of this hatchery. Chilean mussels Although there are three different mussel species native to Chile (Magellan mussel, Choro mussel and Chilean mussel), only the last one is of large commercial interest and represents 100% of the farmed animals and products exported by the local mussel sector. With harvest volumes that range between 270,000 and 290,000 tonnes per year, this is the second largest aquaculture industry in Chile, with about 70,000 exported tonnes and US$ 200 million in revenues annually. In geographical terms, this is an industry that operates exclusively in the region of Los Lagos, providing about 17,000 workplaces in the area. Viviana Videla noted that the Chilean mussel is a native species which has a good range of tolerance to changes in temperature, drying and salinity. “It is quite a pliable and resistant species,” she said, adding that this is a blue mussel, very similar to the Galician mussel (Mytilus galloprovincialis) in terms of size, meat color, texture, flavor, etc. In the wild, this species fertilizes its spat in natural beds, floating within the plankton until they attach themselves to a solid substrate to grow. The production cycle of this bivalve lasts for about 21 months from spat to harvest. Operation and objectives This facility’s operation is mainly oriented to detection and identification of Chilean mussel larvae in plankton using epiflourescence microscopy. This is intended to generate useful information for small farmers dedicated to mussel seed collection. “If we inform them that there is natural spawning in a specific area, they can place collectors and catch seed. Before, they planned this process in connection with certain dates or season,” Videla explained. In addition, the hatchery has been working on the production of mussel seeds and developing technologies to farm mussels in land-based facilities. “This is technologically feasible,” she added, “but we need to develop and refine our model, since production costs are still a problem. It is difficult to compete with the costs of seed collection in the wild. The challenge is to produce at competitive costs or to change the paradigm, producing adults instead of just seeds and reducing the number of production stages, for example, and thereby cutting costs.” Start with the breeders Mussel seed production starts with the selection of breeders, usually from farming sites; then comes the conditioning of breeding animals, aimed at achieving the maturation of the gonad. Once breeders mature, they are induced (with temperature and UV irradiation) to expel gametes. A process of cleaning and selection of embryos is performed after fertilization. This lasts for two days and leads to the first larval stage, straight-hinge veliger, commonly known as 'D larva', because of its shape like the capital letter D. This animal is about 80 microns long and continues growing until after about seven days (depending on the temperature) it enters the umbonate larvae stage, at which point the hinge is no longer straight but rounded, which is commonly known as 'umbonate larva'. This stage lasts for 10-12 more days. When the statocyst becomes visible, it is the first sign that larva (also called ‘eyed larva’) are close to settling, metamorphosing, and fixing through the byssus. Then, the 'foot' appears and starts walking, adheres to a substrate, loses the cilia and stops swimming. At this point it generates the byssus and, when the mollusk is fixed to a substrate, its shell begins to calcify and take color. This stage is usually known as 'post larva'. “When the mussel reaches 10mm long we call it seed, although it is a juvenile, which continues to grow until it becomes an adult (˜7cm). In this species, the first sexual maturity (with functional gonad) occurs when the specimen reaches about 3.5 cm in height,” Videla explained. Hatchery advantages She also described some advantages of producing seed in a hatchery: Specifically she noted that mussel seeds can be produced at any time of the year and makes it possible to select breeders according to desired phenotypic characteristics, for example, growth rate or faster detoxification of toxins such as PSP. Another advantage was de-seasonalizing production in order to maintain processing plants in operation more months every year. Most of the species reared in this facility over the past 21 years were investigated and produced through governmental-funded projects. “In general, if the seed market does not exist and the production of adults is not massive, once the project is finished you do not have enough funds to continue. Although our hatchery is not so small, it is not of commercial scale either. It is intended for research at pilot level. Therefore, production is always more oriented to applied research,” she said.
Murray cod (Maccullochella peelii peelii), with its densely marbled flesh, has a strong following among Chinese and Vietnamese communities and a long-standing reputation at the top end of the seafood market.
Production of steelhead smolts using natural origin broodstock can be optimized by sorting slower growing individuals several weeks after ponding and rearing them as age-2 smolts (S2), according to combined results from the hatchery and laboratory experiments of the U.S. National Oceanic and Atmospheric Administration’s Northwest Fisheries Science Center, Manchester Research Station.
Feeding Atlantic salmon (Salmo salar) higher dietary phosphorous (P) throughout its freshwater life stage significantly reduces occurrence of vertebral malformations, according to a study conducted at the Institute of Aquaculture, University of Stirling in Scotland.
Danish fish feed company BioMar is increasing it research capabilities with the opening of a new state-of-the-art marine fish larval trial unit. This addition expands BioMar's Aquaculture Technology Centre (ATC) Hirtshals facility in Denmark.
A study in Ecuador was able to demonstrate that hatchery production of rock oyster (Striostrea prismatica) spat is feasible, providing a basis for its large-scale propagation.
The first comprehensive book on the use of cleaner fish in aquaculture, edited by Jim Treasurer, research manager with FAI Aquaculture, Marine Research Facility Ardtoe, has recently been published. The new volume, which addresses the main issues in the farming of cleaner fish and offers guidance on how to improve growth and survival, includes contributions from a team of over 60 experts in cleaner fish biology, culture and deployment.
Rsearchers from Egypt and Saudi Arabia found that applications of green tea were beneficial to the growth performance of Asian sea bass fingerlings.
Looking after and promoting friendly bacteria in RAS systems, rather than killing the good with the bad, could have beneficial impacts on fish health and production profitability, according to the early findings of a three-year research project run by scientists in Norway, Denmark and Germany.
A team of researchers at Nofima (The Norwegian Institute of Food, Fisheries and Aquaculture Research)'s Centre for Closed-Containment Aquaculture (CtrlAQUA) focused on skin to assess the health and welfare of salmon post-smolts.
Soy peptides (SP) can be used to enhance the immune response and survival of juvenile Japanese flounder (Paralichthys olivaceus) under heat stress, according to a recent study. SP, a soy protein enzymatic hydrolysate, contains bioactive substances that could be utilized as an immune-stimulating feed ingredient. “Feed companies would greatly benefit from the study, as SP may now be a new ingredient source. Fish farmers may also exploit the potential of SP for increasing the defined function of cultured fish, especially in the context of climate change,” one of the authors, Janice Ragaza, told Hatchery International. Ragaza is an associate professor at the Department of Biology, Ateneo de Manila University in the Philippines. At the time of the study, she was still doing her doctorate studies on Fisheries Science at the Laboratory of Animal Aquatic Nutrition, Faculty of Fisheries, Kagoshima University in Japan. In the study, diet inclusions with zero, two, five and 10% SP were fed to juvenile flounder. “If the objective is for maximum growth, then the inclusion levels should be greater than 10% SP. If the objective is for thermotolerance, 10% SP is the optimum,” she said. After a feeding trials, the experimental groups were subjected to heat stress to measure survival rate and heat shock protein 70s (HSP70s) in gill, liver and skin. A significant reduction in HSP70s was observed among all groups during recovery period. “HSP70s usually show up when the organism experiences heat stress. The reduction in number over time means that the organism is reaching its equilibrium (i.e. normal, pre-stress) condition,” she said. She compared HSP70s to cooling fans inside laptops. “Like cooling fans, HSP70s bring the fish under heat stress, e.g. increase in water temperature, to stable conditions. With more HSP70s in the tissues, the fish is therefore more stable amid the stress exposure.”                                                                                         
Dominated by the Pacific white shrimp (Penaeus vannamei), India's shrimp sector is growing and becoming extremely dynamic. Healthy, high quality seed is key to its success, but the increasing intensification and commercialization of shrimp aquaculture to meet demand has exacerbated disease epizootics. Reports from hatcheries of mass larvae mortalities at the Zoea-2 stage prompted Dr. T. Sathish Kumar at the Indian Council of Agricultural Research (ICAR)-Central Institute of Brackishwater Aquaculture in Chennai to investigate further. " P. vannamei and Litopenaeus stylirostris species appear to be infected," said Dr. Kumar. "They appear normal until they cross the Zoea-1 stage. Then they suddenly stop feeding after 36 - 48 hours and systemic abnormalities are observed, such as anorexia, lethargy, empty gut, reduction in feeding and absence of faecal strands, followed by delayed moulting of up to 3-4 days and gradual, progressive mortality in 30 - 90% of the larval population." The impacts on hatcheries are significant. Losses from Zoea-2 syndrome in an Indian commercial hatchery with a stocking capacity of 100 million nauplii are estimated at around $18 - 61,000 USD. Establishing strict management practices, reducing the number of days of stocking nauplii to less than 3 - 4 days in the same unit, disinfecting everything including implements and air pipes, creating shutdown periods between larval production cycles, and physically separating units for maturation, spawning and larval rearing could all help reduce mortalities. "My work reinforces the adoption and implementation of best management practices in hatcheries," said Dr. Kumar. "It has shown that Zoea-2 syndrome isn't caused by known infectious agents. Other pre-disposing factors could be a lack of separate larval rearing units, and shrimp hatcheries must invest in improved biosecurity to prevent losses and sustained continued larval production." Dr. Kumar suggests that an integrative multidimensional investigation, involving physiological factors within zoea and microbial dynamics in hatcheries may help to understand the causes of digestive system impairment in shrimp and the role of opportunistic pathogens.
One hundred and 200-gram salmon smolt grew more quickly when put into seawater for grow-out compared to 600-gram fish. This was part of the results of a study conducted by researchers from the Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima) which compared performance in terms of growth, survival, health, maturation of salmon produced by using different production protocols in RAS. “We do not know the reason for the reduced growth during summer in the fish transferred at 600 grams. The trend was the same in all 600 grams-transferred fish, irrespective of photoperiod or salinity in RAS. We are, at the moment, doing analysis of fish composition to see if we can find an explanation,” Nofima scientist Trine Ytrestøyl told Hatchery International. Cost implications Ytrestøyl presented the study at the Aquaculture Innovation Workshop (AIW) 2017 in November in Vancouver. “Since the presentation at AIW, we have done the final sampling, and the 600-gram fish grew very well during the final two months in the sea from September to end of November. But despite their catch-up growth, they were still smaller than the 100 and 200 grams- transferred fish at slaughter in late November,” she said. Cost implications are not covered by the project, she said, because it is very dependent on the sea lice situation. “If this is taken into account, it may be more economical to use the larger post-smolt of 600 grams even if it grows a little slower in the seawater phase,” she said. The larger fish, she explained, can reduce grow-out time in open sea cage by 2.5 months, which saves one to two delousing operations, compared to stocking with 100- and 200-gram fish. There are also health benefits, she added, because delousing is tough on the fish and leads both to reduced growth and some mortality. It is a common procedure these days to produce salmon smolt to a bigger size before they are put in seawater for grow-out. Seawater tolerant salmon “Some believe that a larger size makes the fish better able to cope with sweater because they have a smaller surface/volume ratio compared to smaller fish. Thus it should be less energy-demanding for them to regulate their ion levels in seawater. In seawater, water has a higher osmolarity than the fish, so ions will diffuse into the fish, which has to spend energy to get rid of ions to keep its osmotic balance,” she said. The traditional way produces 70- to 100-gram smolts. There has been an increase in smolt size up to 200 to 500 grams because it cuts production time in open sea cages, a procedure seen as critical in avoiding problems with salmon lice and other diseases. “We wanted to test if it was possible to produce a seawater-tolerant salmon without using a winter signal with short day for six weeks, and also how larger fish (600 grams) would perform compared to smaller fish (200 grams) at transfer. We used brackish water at 12 ppt in some treatments in RAS to see if this would improve growth and seawater tolerance and performance after seawater transfer,” she said of the study. Natural way In nature, Atlantic salmon go through a smoltification process to prepare them for life in seawater and this physiological change is induced by the dark winter. In aquaculture, however, smoltification has been induced by giving the small salmon juveniles, called parr, a period of short days of six weeks with-12 hour light and 12-hour darkness, followed by a minimum period of four weeks with 24-hour daylight. “This is sufficient to trigger the transformation from a freshwater adapted parr to a seawater adapted smolt,” she said. “In RAS, growers want to have optimal growth, and be able to feed the fish 24 hour, so they would like to produce a fish that can go to seawater without having a period with 12:12 light/darkness; the salmon is not fed in darkness.”
Norwegian research has shown that some salmon families have higher levels of healthy fatty acids in their muscle tissue than others. From cancer prevention to promoting infant health and development and inhibiting cardio vascular disease, essential Omega 3 fatty acids have proven to be nutrient behemoths in human health, and researchers in Norway believe they can raise salmon bred to be teaming with the essential fatty acids. However, over the last decade the level of these fatty acids in farmed salmon fillets has decreased owing to the substitution of fish oil with vegetable oil in the fish feed. Fortunately, salmon have the capacity to convert fatty acids from plants into EPA and DHA, according to researchers at Norwegian breeding and genetics giant Nofima AS. While feed is the largest factor determining the level of EPA and DHA in the fillet, there is evidence that genetics also plays a role. Previous research has shown that some salmon families have higher levels of the healthy fatty acids in their muscle tissue than others, suggesting there is potential in using selective breeding as a tool to increase levels of omega-3 in Atlantic salmon muscle. “Our research has shown that the individual omega-3 fatty acids have different heritability, as well as different correlations to other important production traits,” said Siri Storteig Horn, a PhD researcher at Nofima conducting the research. “All the major fatty acids in the muscle showed a certain degree of heritability. DHA was the omega-3 fatty acid with the highest heritability (0.26), proving to be the best trait for selection. EPA had a low heritability (0.09).” Horn said that they’ve estimated the heritability of individual omega-3 fatty acids and their relationships to lipid deposition traits and other traits of the breeding goals (carcass, quality and disease). “This is key to predicting the consequences of selection for higher levels of healthy omega-3, and is important information for breeders if they want to implement selection for this trait,” she added. Gene identity Currently Horn is working on identifying the genes associated with increased omega-3 content in salmon muscle. “This will increase the understanding of the biological processes underlying the trait, as well as improve selection accuracy by allowing marker-based selection,” she said. Should this prove viable, salmon breeders can implement marker-based selection for healthy omega-3 and produce a salmon with higher nutritional value to consumers. Ultimately, Nofima wants to see if it is possible to increase the salmon’s natural capacity to convert short-chained omega-3 form plant oil into EPA and DHA through selective breeding, and in this way stop the decline in omega-3 levels in farmed salmon fillets. To achieve this, they’re aiming at increasing the understanding of which biological processes are determining the level of healthy omega-3 fatty acids in salmon muscle. Horn said breeding and genetics is at the very foundation of successful salmon farming and will continue to meet future challenges facing the industry.
The Fynest Caviar Co. can now proceed with finalizing plans to build a closed containment RAS on Loch Fyne in Cairndow, Scotland after the concept received the go-ahead from Argyll and Bute council’s planning committee.
Kingfish Zeeland, which operates a new RAS production facility for yellowtail kingfish (Seriola Lalandi) in the Netherlands, has confirmed that it’s started to sell product into the United States through its Florida partner Candor Seafood.
Ideal Fish has officially opened its brand new land-based aquaponic facility in Waterbury, Connecticut, in the United States, spanning 63,000-sq-ft of recirculating aquaculture system (RAS).
I remember when “organic” was just a basket full of spotted apples in the corner of the produce section. It’s not that anymore.  
Compared to on-shore grow-out farms, where water is pumped through tanks and raceways, fish hatcheries and nurseries use significantly less water. The reason is that the biomass produced in these facilities is normally 10 to 100 times smaller than in grow-out farms. So, why is there a need for RAS technologies in fish hatcheries?
A freshwater director for one of the world’s leading salmon producers explains how closed containment fits into the company’s corporate strategy going forward.
Recirculating Aquaculture Systems (RAS) present us with an alternative to seawater net-pen aquaculture.  The recent struggles with net pen licenses, and legislation in general, have made it difficult in many countries to expand current sea farms or create new ones.  
Consider these two scenarios: Business A – Fish enters farm at two grams in September and reaches 30g two years later; Business B – Same species of fish enters farm at two grams in October and reaches 30g in nine months.  
In 2013, the European Union’s food sector was a major consumer of energy, accounting for 26 per cent of final energy consumption. Agriculture and livestock production were responsible for 33.4 per cent of the energy costs associated with food consumed in the EU.
Recirculating aquaculture systems (RAS) technology development has been and continues to be a melding of borrowed engineering. Components of RAS originate from municipal and industrial wastewater treatment industries with applied research and development specifically on aquaculture technologies by academics in public and private institutions, as well as a little creative ingenuity provided by farmers, consultants and system suppliers.
A Norwegian wastewater treatment and purification company will be providing the technology for wastewater treatment for a new hatchery being built in Scotland.
Norwegian farmed salmon producer Atlantic Sapphire is making a significant move into the United States with the ongoing construction of a major RAS facility in Florida. The Atlantic Sapphire Miami Bluehouse will bring the technology and techniques established for the past seven years at their Danish pilot facility to America.
Vancouver Island on the west coast of Canada is a long way from the Balkans, but a European expert is looking to replicate the success he had there by raising freshwater crayfish in British Columbia.
Fish-breeding experts in Taiwan have broken new ground with the first successful breeding in captivity of one of Asia’s premium fish: the large-mouth grouper, known in the Philippines as lapu-lapu, but most commonly referred to in China as garupa.
The Tru Shrimp Company has signed an agreement with the Oceanic Institute of Hawaii Pacific University to develop a nucleus shrimp breeding program in the U.S. Under the agreement, Oceanic Institute will supply Pacific white shrimp (Litopenaeus vannamei) breeding stock selected and developed exclusively for Tru Shrimp.
Aquaculture biotechnology firm Benchmark and salmon producer AquaChile have announced a breeding and genetics joint venture to form a new genetics company that will create a "world-class salmon breeding operation," according to a statement from Benchmark.
Riverence Hatchery in Washington state is putting the final touches to a state-of-the-art egg production facility, aiding their quest to grow and support the salmonid farming industry in the United States.
Croatia’s Cromaris has hired Scotland’s Xelect Ltd to render genetic services for the bream and bass producer. Under the agreement Xelect will provide complete genetic management service to Cromaris’ selective breeding program.
Through a grassroots-approach, a USAID-funded program is offering a solution for sub-Saharan Africa's fish farmers' perennial problem of sourcing catfish fingerlings.
The Philippines’ perennial shortage of milkfish fry may find its resolution in the National Broodstock Development Program (NBDP), an initiative of the Department of Agriculture – Bureau of Fisheries and Aquatic Resources through the National Fisheries Research and Development Institute (NFRDI).“A broodstock development program is considered one of the limiting factors faced by many industry stakeholders. This may be addressed with the help of the government by establishing a broodstock development facility which will cater to the needs of interested stakeholders for their broodstock requirements by operating a breeding and hatchery facility,” Francisco Santos, OIC-Chief at the Aquaculture R&D Division of the NFRDI, told Hatchery International.“With the increased number of hatcheries operating in the locality, producing and obtaining juveniles for aquaculture use is seen to have greater feasibility and economic viability,” Santos said.NBDP, which has been approved but not yet signed, covers the stock inventory of existing breeders, hatchery facilities and manpower, selection and upgrading of broodstock, development of breeders, screening and identification of program recipients, upgrading of knowledge and skills through training and technical staff.“While milkfish is important, its production has been hindered by various problems. Among the most critical of these is the limited supply of fry,” he said.Based on 2015 figures, the milkfish requirements of the Philippines was estimated at 2.5 billion fry. Private and government hatcheries supplied only one billion. The rest were either imported, mostly from Indonesia, or were wild fry.
The Foundation for Food and Agriculture Research (FFAR) is a nonprofit organization established by the United States’ Congress in the 2014 Farm Bill. Remarkably for these times, there was bipartisan congressional support for the organization and the activities it supports, which include aquaculture.
As the arms race to develop more efficient and effective live feeds for hatchery applications continues Norway’s Planktonic AS has developed a unique approach which they say could be a game-changer for the industry.
Searching for better ways to preserve sperm from southern flounder, particularly wild sourced, researchers in the United States found that vitrification of flounder sperm can successfully be used to fertilize female eggs.
Larval nutrition is a complex part of the aquaculture industry, especially if one thinks of shrimp or marine fish nutrition.
A small number of Lost River and shortnose sucker fish were released along the shores of Oregon’s Upper Klamath Lake several weeks ago.
The mussels in the Delaware River Basin are about to get a helping hand.
LP Kuzmitch, a privately-owned company in Eastern Kazakhstan, plans to start producing sturgeon fingerlings in a bid to restore populations of this species in the region.
A rare trout makes its home in the upper reaches of the Gila River of New Mexico and Arizona. The Gila trout (Oncorhynchus gilae) is native only to small headwater streams where it was landlocked thousands of years ago from sea-run Oncorhynchus species.
The freshwater pearl mussel is under threat of extinction across England with most remaining populations under severe decline. Now, a new conservation project by the UK Environment Agency's Kielder Salmon Centre is using sea trout to help the mussels flourish once again.
NOAA Northeast Fisheries Science Center (NEFSC) has started altering stocking times and location to optimize survival of Atlantic salmon smolts migrating down Maine's Narraguagus River into the Gulf of Maine on America's eastern seaboard.
How efforts by government agencies in California contributed to a record salmon return at the Mokelumne River Fish Hatchery
California salmon hatchery managers likely gave a well deserved sigh of relief when record winter rains of 2016/17 ended a five year drought and restored flows to the state’s salmon producing rivers. But the legacy of those drought years continues to haunt them, as poor adult returns this fall have reduced the egg production goals at Coleman hatchery, the states largest producer of Chinook fry, by half, according to Sacramento area media. Coleman aims for 12 million smolts to release each spring into Battle creek, a tributary of the Sacramento river. This year, it will be around six million. Poor adult returns to their natal stream, prevented staff from collecting and fertilizing enough eggs. However, there were plenty of Chinook around the California Central valley last fall, enough to provide a commercial and sports fishery, and other hatcheries met and exceeded their goals, but the Coleman fish just didn’t come straight home. Managers say that giving smolts a ride down river in the spring, in response to past drought conditions, is to blame. Hatchery staff were able to collect sufficient eggs and sperm to produce fry on target during the drought years. But spring river conditions in 2014 and 2015 were described as “abysmal”. Warm water temperatures and low river levels could harm the freshly released smolts and increase the likely hood of predation, so in those years they were pumped into tanker trucks and driven the 280 miles down stream to acclimatization pens at the mouth of the Sacramento river. This means that they missed the normal “river imprinting” process and that has disoriented the fish that attempted to find their way home this fall. Historical returns to the Coleman are around 143,000 adult fish. Last fall saw merely 3,000. That was only enough to collect and fertilize about four million eggs. But staff were able to round up some of the missing brethren. Wire tags indicated that many of the strays ended up at Nimbus hatchery on the America River, another branch of the Sacramento, and they gave up another two million eggs for Coleman production. In an effort to avoid mixing genetic strains, US Fish and Wildlife Service officials declined to bring in fish from other watersheds to increase Coleman numbers.
How government and tribal members have combined forces to save a rare and endangered species of trout in Arizona. The Apache trout is named for the people and the place that are intertwined with one another. The yellow trout ornamented with black spots, white-tipped fins, and a raccoon-like eye mask lives naturally only in the headwaters of the White, Black, and Little Colorado rivers near the New Mexico border. These waters harbor some of the last remaining populations of this pretty trout found nowhere else but in streams that rim the White Mountains of Arizona. The fish has been well known to anglers for some time. Local farmers and ranchers made summertime forays into the high country to catch them. One correspondent, simply “J.H.” from Show Low, Arizona, wrote in a July 1886 issue of the St. John’s Herald: “I speak truly when I say it was the most enjoyable period of my life.” He recounted how he and his pals caught scads of Apache trout from the White River during a prolonged summer outing. The sport fishery was renowned. The Apache trout had become known to science a few years earlier in 1873, when it was collected by members of the U.S. Geographical Survey, and wrongly identified it as a Colorado River cutthroat trout. Other scientists collected it from the White Mountains from time to time, but it wasn’t until a century later in 1972 that the fish was properly recognized as a unique species and assigned its current scientific- (Oncorhynchus apache) and common names. A year later it was placed on the endangered species list. Places everywhere have their scars, and the White Mountains are no exception. The loss of habitat from excessive timbering and grazing and the introduction of non-native trout species were detrimental to the native Apache trout. High sedimentation during the spring run-off affected trout reproduction; fine sediments clogged porous gravel beds where oxygen-rich water should percolate over incubating eggs. Over the last 75 years, through the actions of the White Mountain Apache Tribe, followed by work with the U.S. Fish and Wildlife Service (Service), U.S. Forest Service, and Arizona Game and Fish Department, Apache trout populations have rallied. The future looks sunny for the species; it could be the first sport fish to be recovered and removed from federal threatened or endangered species protection. Conservation work continues. Cattle have been fenced out of select Apache trout streams within the Apache-Sitgreaves National Forest and along streams within the Fort Apache Indian Reservation. Non-native sport fishes are no longer stocked near Apache trout waters. Alchesay-Williams Creek National Fish Hatchery, located on the reservation, continues to raise Apache trout for sport fishing. Apache trout from the federal fisheries facility are stocked on the reservation and they are shared with the Arizona Game and Fish Department to be stocked in neighboring national forest waters. Many streams are open to anglers. The Service’s Arizona Fish and Wildlife Conservation Office (FWCO) biologists remain shin-deep in Apache trout work, striving toward that goal of recovering the threatened species. They expend a great deal of energy removing non-native brown trout and brook trout from Apache trout waters. They accomplish this with backpack-mounted electrofishing gear where the unwanted fish are stunned and netted from high mountain streams. A new technology known as environmental DNA (eDNA) guides their work. Fish shed skin cells and of course eliminate bodily waste into the water, which then contains the animal’s DNA that can be detected in the water. Biologists from the FWCO and tribe collect stream water from several sites over long reaches, and pass the water through filters that are analyzed by U.S. Forest Service’s Rocky Mountain Research Station. These lab results then identify those stream sections that contain the unwanted non-native trout. Periodic population monitoring continues, as does barrier monitoring. Where unwanted non-native fishes occur downstream, constructed barriers keep those below at bay, and the pure Apache trout populations protected above. Constructed barriers now exist on 23 creeks. At present, Apache trout exist in 28 populations and swim in 170 miles of streams. The lot of Apache trout has changed significantly. In a relatively brief period the species has emerged from anonymity and mistaken identity to the point when the White Mountain Apache Tribe stepped up to protect their trout. It’s now the official state fish of Arizona and a favorite among anglers. For more information contact: Craig Springer, U.S. Fish and Wildlife Service – Southwest Region, Albuquerque, New Mexico. www.fws.gov/southwest
The Inner Bay of Fundy Atlantic Salmon were declared endangered in 2003. Of the more than 40 rivers that were home to the species, mostly have none now.
The Cook Inlet Aquaculture Association’s (CIAA) board of directors has decided to proceed with caution. It will reduce the number of pink salmon planned for release in the spring from its Tutka Bay Lagoon Hatchery. The hatchery is located on a lagoon connected to Kachemak Bay which lies within Kachemak Bay State Park.
The Apache trout is named for the people and the place that are intertwined with one another. The yellow trout ornamented with black spots, white-tipped fins, and a raccoon-like eye mask lives naturally only in the headwaters of the White, Black, and Little Colorado rivers near the New Mexico border. These waters harbor some of the last remaining populations of this pretty trout found nowhere else but in streams that rim the White Mountains of Arizona.
FloatPac, owners of FishPac live seafood transportation systems, have announced the first successful shipments of live salmon parr fingerlings (Salmo salar), from Scotland to Dubai.
AquaTactics Fish Health has a new addition to its team of fish health experts. Dr. Kyle Farmer is the company's new veterinarian and professional services manager, providing fish health consultation and fish health medicine support to public stock enhancement facilities and private aquaculture clients, both nationally and internationally, the company said.
Earlier this year BernAqua announced that it had received organic certification for some of its hatchery feed products. Based in Belgium, BernAqua specialises in advanced nutrition and environmental solutions for hatcheries.
The team at Innovaqua, a Spanish company specialising in aquaculture technology, is responsible for the design and manufacture of the Mirafeed system.
Global fish feed producer BioMar is investing to increase production of fry and RAS feeds at its factory in Denmark, following an upward trend in the company’s sales volumes.  
Evonik, one of the world leaders in specialty chemicals, has launched a new software tool that gives amino acid recommendations for optimizing tilapia feed. AminoTilapia was built following a factorial modelling approach and allows users to optimize amino acid regulations for different growth stages of tilapia, by simulating different production scenarios.
The 2018 Global Aquaculture Innovation Award has announces it is now accepting applications for the sixth annual competition.
Aquacultural engineers Paul Hundley and Maddi Badiola recently announced the formation of HTH aquaMetrics llc , with offices in Hiawassee, Georgia, USA and Getxo Biscaye, Basque Country, Spain. HTH aquaMetrics llc is a recirculating aquaculture planning, design and consulting firm that provides technical and due diligence assessment services for aquaculture system and facility investors, owners, managers and operators. According to a press release from the company, the basic premise of aquaMetricsTM is that there are distinct, measurable characteristics that can be analyzed to determine the chemical, physical and biological traits of an existing or proposed aquaculture system. “These traits,” notes the press release, “when accurately measured can be analyzed to define material condition of existing systems and the operational performance capability of existing or proposed systems. Material Condition refers to mechanical and electrical integrity and reliability. Operational Performance refers to process, ecological and economic inputs, outputs and efficiency.” These conditions and capabilities relate to the economic value, environmental impact, and opportunities for improving an integrated production facility. For additional information go to: www.HTHaqua.com
The Wilsgård Offshore Tank Fleet (OTF) is a barge-based smolt production concept under development by Norway’s Wilsgård Fiskeoppdrett AS for use in Norwegian fjords. A key part of the design is a recirculating aquaculture system (RAS) explains managing director Fredd Wilsgård. “The OTF is 100% closed and has no emissions. That means that we clean all the water that comes in and we clean all the water that goes out.” By cleaning the water that comes into the OTF, no unwanted organisms (bacteria, sea lice, etc) enter the production system. Also, the production water is cleaned and sterilised before it leaves the system. And it’s 100% secure against escapes. One of the goals of the OTF is site area optimization. Since the OTF cleans water coming in and going out of the system, it will neither be affected by nor affect the environment. As Wilsgård points out, “this means that you can establish larger OTFs, more OTFs and that they can be located in the same fjord. If you look at traditional area use at a site, 200 × 600 metres, you can place six OTFs in such an area and deliver large smolt at up to 70 traditional concessions.” The OTF is designed to take on fry at 30–40 grams and rear them to 500 grams before the fish are transferred to traditional fjord-based cages for a period of about 12 months. Since the OTF takes fry into production, the area required on land is also significantly reduced. The company has applied for eleven development licenses, with a total maximum allowed biomass of 8580 tonnes for the OTF.
Fish reared in sunny, outdoor climates can suffer from the effects of severe sunburn. And although water generally provides a good barrier against most wavelengths of ultra-violet light, middle and long U-V wavelengths can penetrate water, particularly in water of high clarity. Water with even moderate turbidity from suspended solids, or discoloration from dissolved organic substances, usually provides an excellent barrier against all U-V wavelengths, and sunburn will not be a problem. However, if you are using a high clarity water source, like groundwater, and have an outdoor facility, your fish may susceptible to sunburn. Fish with sunburn develop skin sores in the areas exposed most directly to the sun, the top of the head, dorsal fin and upper back, and the top of the caudal fin. The affected skin first turns a whitish color and eventually becomes patchy, thickened and creamy colored. Fins become frayed with a rough, ragged margin, and as the sores develop, the skin flakes off leaving a whitish or pink colored ulcer exposing the underlying cartilage or muscle. An easy solution, says Adam Anton, a Fish and Wildlife Technician at Feather River Hatchery in California, is to build a simple sunshade as shown in the photo. The material list is simple, just some 1-inch PVC pipe, elbows, PVC glue, shade cloth and zip ties. The holes on top of the shade cloth are so fish won’t get trapped if they jump on top of it.
Pacific Trading Aquaculture of Dublin, Ireland recently announced that it has changed its name, re-branding as PT Aqua.
Group Dibaq, a Spanish producer of feed for pets and aquaculture, will be producing a new shrimp feed for Sea Farm Nutrition. The new product will be sold under the ProChaete brand, with the name Grow Pro.

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

Aqua 2018
Sat Aug 25, 2018
Laqua 18
Tue Oct 23, 2018
Aquaculture 2019
Thu Mar 07, 2019

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.